Numerical investigation of smart base isolation system employing MR elastomer
نویسندگان
چکیده
منابع مشابه
‘‘Smart’’ Base Isolation Strategies Employing Magnetorheological Dampers
One of the most successful means of protecting structures against severe seismic events is base isolation. However, optimal design of base isolation systems depends on the magnitude of the design level earthquake that is considered. The features of an isolation system designed for an El Centro-type earthquake typically will not be optimal for a Northridge-type earthquake and vice versa. To be e...
متن کاملOPTIMAL SMART BASE ISOLATION SYSTEM FOR MULTIPLE EARTHQUAKES
Hybrid control system composed of a base isolation system and a magneto-rheological damper so-called smart base isolation is one of effective semi-active control system in controlling the seismic response of structures. In this paper, a design method is proposed for designing the smart base isolation system in order to achieve an effective performance under multiple earthquakes. The base mass, ...
متن کاملOPTIMAL HYBRID BASE ISOLATION AND MR DAMPER
In this paper, optimal design of hybrid low damping base isolation and magnetorheological (MR) damper has been studied. Optimal hybrid base isolation system has been designed to minimize the maximum base drift of low damping base isolation system where for solving the optimization problem, genetic algorithm (GA) has been used. In design procedure the maximum acceleration of the structure has ...
متن کامل‘‘Smart’’ Base Isolation Systems
A ‘‘smart’’ base isolation strategy is proposed and shown to effectively protect structures against extreme earthquakes without sacrificing performance during the more frequent, moderate seismic events. The proposed smart base isolation system is composed of conventional low-damping elastomeric bearings and ‘‘smart’’ controllable ~semiactive! dampers, such as magnetorheological fluid dampers. T...
متن کاملSeismic Response Reduction of Structures using Smart Base Isolation System
In this study, control performance of a smart base isolation system consisting of a friction pendulum system (FPS) and a magnetorheological (MR) damper has been investigated. A fuzzy logic controller (FLC) is used to modulate the MR damper so as to minimize structural acceleration while maintaining acceptable base displacement levels. To this end, a multi-objective optimization scheme is used t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2009
ISSN: 1742-6596
DOI: 10.1088/1742-6596/149/1/012099